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A set of conservation equations is utilized to derive balance equations in the reconnection diffusion
region of a symmetric pair plasma. The reconnection electric field is assumed to have the function
to maintain the current density in the diffusion region and to impart thermal energy to the plasma
by means of quasiviscous dissipation. Using these assumptions it is possible to derive a simple set
of equations for diffusion region parameters in dependence on inflow conditions and on plasma
compressibility. These equations are solved by means of a simple, iterative procedure. The solutions
show expected features such as dominance of enthalpy flux in the reconnection outflow, as well as
combination of adiabatic and quasiviscous heating. Furthermore, the model predicts a maximum
reconnection electric field of E�=0.4, normalized to the parameters at the inflow edge of the
diffusion region. © 2009 American Institute of Physics. �doi:10.1063/1.3246005�

I. INTRODUCTION

Magnetic reconnection is one of the most fundamental
plasma processes in laboratory, space, and astrophysical
plasmas. Reconnection operates by converting magnetic en-
ergy into particle energy, which manifests itself in form of
heat or pressure, and in form of bulk motion.1 Reconnection
also facilitates plasma transport across topological magnetic
boundaries, and it may change the overall topology of the
magnetic field.2

Reconnection is a meaningful concept only if plasma
component species are frozen into the magnetic field in the
vast majority of the physical volume under consideration. If
this condition is not fulfilled the system is referred to as
diffusive. In the former case, reconnection is facilitated by a
localized region, wherein the frozen-in condition is violated.
This region is usually termed the diffusion region.

A further distinction concerns the processes effecting the
violation of the frozen-in condition in the diffusion region. In
a collisional plasma, such as found in some laboratory ex-
periments, the lower ionosphere of the Earth, the lower solar
atmosphere, and in some astrophysical plasmas, interparticle
collisions effectively scatter particles off magnetic field lines.
Macroscopically, collisional processes of this kind heat the
plasma, and they produce a resistivity.

In a collisionless plasma, the means of demagnetizing
particles is not as immediately obvious. Since most space
plasmas and many laboratory plasmas fall into this category,
this question has received considerable attention as a re-
search focus, primarily based on numerical simulations, and
also by data analyses of laboratory and space measurements.
Candidate processes include wave-particle interactions as
well as particle inertia-based processes. Numerical simula-
tions exhibit evidence for both, and a resolution of which
process dominates when remains outstanding.

Owing to the complexity of the problem, the vast major-
ity of kinetic reconnection research has been based on mod-
eling with accompanying theoretical estimates. Analytical

theory has focused primarily on magnetohydrodynamics
�MHD�, Hall-MHD, or multifluid studies,3–8 some of which
assume, for simplicity, a resistive evolution in the diffusion
region. A recent study employed a viscous term7 in a pair
plasma model to generate analytical estimates for diffusion
region properties. While these studies have been extraordi-
narily successful, they do not fully address the kinetic nature
of the diffusion region.

Numerical simulations of pair plasmas have provided
ample evidence of fast reconnection, and dissipation has
been most commonly attributed to pressure tensor effects.9–12

There is, however, disagreement in the literature as to why
reconnection remains fast even in the absence of Hall-type
effects.

A significant step toward an analytical, kinetic theory of
collisionless magnetic reconnection has recently been under-
taken by Tsiklauri.13 This work recognizes the relation be-
tween the reconnection electric field and the nongyrotropic
components of the electron pressure tensor. By assuming in-
compressibility, the authors show that fast reconnection may
result from reasonable assumptions of the extent of the dif-
fusion region.

In this paper, we provide a complementary step toward a
kinetic model of the diffusion region. We will adopt previous
assumptions and theory results13 such as a diffusion region
width given by particle bounce motions and pressure tensor-
based dissipation, which appears to be consistent with
numerical models. We will, however, primarily use
conservation-based arguments for both momentum and en-
ergy to derive equations, which specify the dimensions of the
diffusion region completely, and which therefore yield esti-
mates of the reconnection rate.

In order to proceed with this theory, we adopt a number
of assumptions, some of which �1–3� are basic requirements
for magnetic reconnection. Some further assumptions �4–11�
are adopted to simplify the problem. These are the basic
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properties of magnetic reconnection: the role of the recon-
nection electric field.

�1� The first function of the reconnection electric field is to
sustain the current density in the diffusion region. In-
coming plasma typically does not exhibit drift velocities,
which support the current flow required by the external
magnetic field. At the same time, losses through convec-
tion and outflow reduce the current density. The recon-
nection electric field thus serves to accelerate the incom-
ing plasma such that sufficient current is flowing in the
diffusion region.

�2� The second function of the reconnection electric field is
to heat the incoming plasma populations such that pres-
sure balance with the outside system is maintained. The
reconnection electric field must have this role in order to
replace the convective loss of hot plasma through the
reconnection outflow.

�3� Items �1� and �2� imply that the energy imparted by the
reconnection electric field will manifest itself in part as
bulk flow in the current direction for positively charged
particles, and against it for electrons, and in part as in-
crease in the plasma thermal energy.

We contend that items �1�–�3� need to be fulfilled in
any kinetic reconnection process. In addition to these
axioms, we need to make a set of simplifying assump-
tions. These are the following.

�4� We consider a symmetric, two-species plasma consisting
of electrons and positrons only with equal temperatures
and densities. Extensions to more complex plasmas will
be discussed but will remain a topic of future studies.

�5� The plasma will be treated as polytropic with small,
nongyrotropic deviations in the diffusion region. These
deviations will be derived from a perturbation-type
analysis.

�6� The thickness of the diffusion region in-between the
magnetic fields in the inflow region is given by the par-
ticle bounce width.

�7� The system is in steady state.
�8� The system is translationally invariant in the out-of-

plane direction.
�9� Both sides of the inflow region are symmetric and there

is no guide field in the model.
�10� Pressures, densities, and current densities in the diffu-

sion region are very similar to the adjacent outflow re-
gion.

�11� Heat flux effects in the energy equation are neglected.

We will use these assumptions in an analysis of conser-
vation equations, in particular, of momentum and energy
equations. In the Sec. II, we will discuss preliminaries. Sec-
tion III will focus on the momentum equation and Sec. IV
will analyze the energy equation. Section V will combine all
results to derive a complete set of equations for diffusion
region properties. Section VI will discuss results and Sec.
VII will provide a summary and discussion.

II. PRELIMINARY CONCEPTS

We assume that the diffusion region is a rectangular box
of width 2L and thickness 2d. Outside of this box, the plasma
is assumed to be frozen into the magnetic field, whereas
inside the plasma is demagnetized. Quantities at the inflow
boundary are denoted by the subscript i and outflow bound-
ary quantities are denoted by the subscript o. Using assump-
tion �10�, we also denote by the latter subscript pressures and
densities in the diffusion region.

We normalize all quantities in the following way. The
magnetic field is normalized to its value at the inflow bound-
ary of the diffusion region Bi, the pressure by Bi

2 /�o, the
velocity by the single-species Alfvén speed at the inflow
boundary vAi=Bi /��omni, the electric field by the product
vAiBi, the mass by the electron �or positron� mass, the density
by its value at the inflow boundary ni, and the length scale by
an inflow boundary inertial length L=c /�i=c�e2ni /�om�−1/2.

A standard continuity equation then relates, for each
species, inflow and outflow densities, velocities, and
dimensions,

vi = vono
d

L
. �1�

The steady-state assumption implies that the reconnec-
tion electric field E� equals the external electric field, both on
the inflow and outflow sides. This implies

E� = voBo = vi. �2�

Combining Eqs. �1� and �2� leads to

Bo = no
d

L
. �3�

III. MOMENTUM EQUATION

The momentum equation plays a critical role in this
theory. Specifically, it will be applied to provide two esti-
mates for current sheet width �Secs. III A and III C� as well
as one for the outflow velocity �Sec. III B�. These results will
later be combined with an energy-equation-based derivation
to obtain estimates of the reconnection rate.

A. Current sheet pressure and sheet thickness

Using assumption �6�, the sheet thickness is given by the
bounce width of thermal particles in the field reversal estab-
lished by Bi. The bounce width, on the other hand, involves
the thermal velocity of the particles in the diffusion region.
The force balance in the z-direction determines the diffusion
region thermal pressure, which equals the sum of inflow
magnetic force and plasma thermal and kinetic pressures,

jyBx + 2
�p

�z
+ 2

�

�z
�nvz

2� = 0, �4�

where the factors of two reflect the combined pressures and
velocities of both species. This is readily written as

1

2

�Bx
2

�z
− Bx

�Bz

�x
+ 2

�p

�z
+ 2

�

�z
�nvz

2� = 0. �5�
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Replacing derivatives by finite differences and integra-
tion over z yields

1

4
−

1

4
Bo

d

L
+ pi + vi

2 = po, �4��

where po is the constant value of the current sheet pressure.
Using assumption �10� we find for the thermal velocity in the
diffusion region

vth,o =�2po

no
. �5��

In dimensionless units, the bounce width d=mvth,o /eBi

becomes immediately

d =�2po

no
. �6�

This expression will be used below. In the next step, we
analyze the force balance in both x directions.

B. Outflow velocity

The assumed symmetry of the particle populations im-
plies that there is no electric field in the x-z plane �x denotes
the outflow and z the inflow direction�. Using assumption
�10�, we neglect pressure gradients in the outflow direction.
Accordingly, the only force capable of accelerating the
plasma in the outflow direction is the Lorentz force. We
therefore write the x-component of the momentum equation
as follows:

�2 � · �nov�v�� − j� � B� � · e�x = 0, �7�

where j denotes the total current density. Note that the iner-
tial contribution of each species balances one half of the total
Lorentz force. Replacing derivatives by finite differences and
using Eq. �3�, the current density can be expressed as

jy = 2novy = �1

d
−

Bo

L
� = �1

d
− no

d

L2� . �8�

Insertion into Eq. �7� and integrating over 1
4 volume of

the diffusion region leads to

novo
2d −

1

2
�1 − no

d2

L2�� dxBz = 0. �9�

Assuming a linear variation in Bz with x and using Eq. �3�
then yields

vo =
1

2
�1 − no

d2

L2�1/2
. �10�

We see that a smaller current density, resulting from an
aspect ratio d /L closer to unity, will lead to less acceleration
and hence less outflow velocity. The inertia of larger current
sheet density has a similar effect.

C. Force balance in the current direction

Using assumption �5�, we write the total pressure tensor
as

PJ = p1J + �J , �11�

where the second term denotes a small, nongyrotropic con-
tribution. Without loss of generality we perform this analysis
for the electron species; the ion equations result from a
simple change in signs. Thus, the y component of the mo-
mentum equation becomes

− � · �nvyv�� = n�Ey + vzBx − vxBz� +
�

�x
�xy +

�

�z
�yz.

�12�

In the diffusion region, the electron pressure tensor com-
ponents are well approximated by14

�xy = −
po

Bo

�vx

�x
	 −

po

Bo

vo

L
, �13a�

�yz = po
�vz

�z
	 − po

vi

d
. �13b�

The essence of the diffusion region is that the plasma is
unmagnetized, i.e., that it does not obey an ExB drift. Ac-
cordingly, we may ignore the convective �
vxB� term in Eq.
�12�. In addition, it is reasonable to assume that no y directed
momentum flux enters the diffusion region from above or
below.

We can now integrate Eq. �12� over one quarter of the
diffusion region. Using Eq. �13� and ignoring the inflow of
y-directed momentum, we obtain

noE�dL − po� vo

Bo

d

L
+ vi

L

d
� = − novyvod . �14�

Equation �14� shows that the accelerative force of the
reconnection electric field �first term� is balanced by qua-
siviscous dissipation �second term� and by the loss of mo-
mentum through the outflow boundary �term on the right-
hand side �RHS��.

Insertion of Eq. �2� and expressing the product of density
and velocity by the current density �8� yields

no
2d − po� 1

BoL
+

vi

vo

L

d2� =
1

2
�1

d
− no

d

L2� . �15�

This is formally solved for d,

d2 =
1

2
�2po� 1

no
+ no� + 1 − no

d2

L2� 1

no
2 . �16�

Equation �16� shows that the diffusion region thickness
is controlled by the compression ratio �lower inflow/outflow
density ratio implies smaller sheet thickness� and current
density �where larger current density implies a thicker cur-
rent layer�.
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IV. ENERGY EQUATION

The energy equation describes how energy inflow is con-
verted to energy outflow in form of enthalpy, Poynting, and
kinetic energy fluxes. Using assumptions �4� and �11�, we
find for each species an energy equation of the form �see the
Appendix�

v� · �p = − 5
3 p � · v� − 2

3 ��J · �� · v� . �17�

In order to represent some effects of anisotropy as well
as some heat flux effects we generalize this equation slightly
by means of a polytropic index �,

v� · �p = − �p � · v� − �� − 1���J · �� · v� . �18�

Equation �18� shows how the magnetohydrodynamic, resis-
tive heating term ��−1��j2 is replaced by a kinetic, quasivis-
cous dissipation term. A substitution of the form u= p1/� and
an expansion of the last term �see Appendix� provide further
simplification,

� · �uv�� = −
� − 1

�
u1−���yz

�vy

�z
+ �yx

�vy

�x
� . �19�

Assumption �10� lets us neglect the x derivative of the
current-directed velocity. Then integration over one box
quarter provides

vouod = −
� − 1

�
uo

1−�� dxdz�yz
�vy

�z
+ viuiL . �20�

Again, we will, without loss of generality, consider the
electron species. Using Eqs. �13� and �3� we find

d = −
� − 1

�
vyno +

vi

vo

ui

uo
L , �21�

where we have used the equality

uo
−� =

1

po
.

We use Eq. �8� to relate the current density to novy as
well as the continuity equation �1� to obtain another equation
for d2,

d2�1 − no
ui

uo
� =

� − 1

2�
�1 − no

d2

L2� . �22�

Equation �22� provides another estimate for the sheet thick-
ness. In Sec. V, we will combine estimates �6� and �16� for
this thickness from the momentum equation with Eq. �22� to
derive a set of equations, which, among others, specify the
reconnection rate. If the kinetic energy in the inflow is ig-
nored, these equations can be solved analytically. As we will
see, inclusion of the inflow kinetic energy is necessary. The
equations are then solved by a simple iteration.

V. SOLUTION

In this section, we combine results from all previous
sections for estimates of reconnection rates and other signifi-
cant parameters. For this purpose, we insert the RHS of Eq.
�15� into Eq. �22�. Sorting then yields

d2�1 − no
ui

uo
− no

2� − 1

�
� = −

� − 1

�

po

no
� 1

no
+ no� . �23�

The unknowns in this equation are the diffusion region pa-
rameter thickness d, density no, and pressure po=uo

�. We can
use assumption �6� to remove the thickness. Using Eq. �6�
thus yields

1 − no
ui

uo
− no

2� − 1

�
= −

� − 1

2�
� 1

no
+ no� . �24�

We define for convenience

� =
ui

uo
= � pi

po
�1/�

. �25�

Then Eq. �24� can be rewritten as an equation for no,

no
3 + � �

� − 1
� −

1

�
�no

2 −
�

� − 1
no −

1

2
= 0. �26�

This equation can be solved by standard techniques. Further-
more, it is evident that Eq. �26� has at least one solution
no	0. However, the solution still parametrically depends on
the inflow total pressure, which depends on the inflow ram
pressure. An analytical solution is possible only if the ram
pressure is negligible; in the more general case, a solution is
found by simple iteration.

The next step is to determine the aspect ratio of the
diffusion region. A suitable expression can be found by com-
bining the energy equation �22� with the bounce width �6�,

4�

� − 1

po

no
�1 − no�� = �1 − no

d2

L2� . �27�

This is readily solved for d /L,

d

L
= � 1

no
−

4po�

� − 1

1 − no�

no
2 �1/2

. �28�

It is noteworthy that this equation does not always have a
real, i.e., physical, solution. This is the case if the required
change in specific entropy ��
u /n��� from inflow to outflow
is too large to be provided by the available quasiviscous
heating.

Using the outflow velocity �10� combined with Eq. �3�,
the reconnection electric field �2� is obtained from the above
results,

E� =
1

2
�1 − no

d2

L2�1/2
no

d

L
. �29�

As noted above, solving these equations requires itera-
tions, since � depends on the inflow velocity and the diffu-
sion region aspect ratio. The solution process is thus as fol-
lows. As an initial assumption, we ignore the inflow velocity
and the aspect ratio in Eq. �4�. We solve Eqs. �26�–�29� and
then recalculate po and �. We then restart the cycle. The
process is repeated until convergence has been achieved,
which typically takes only about 20 iterations.
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VI. RESULTS

Results for the reconnection electric field are shown in
Fig. 1 as a function of polytropic index. The different graphs
represent different values of the plasma pressure parameter

=4�opi /Bi

2 in the inflow region.
Except for the case of vanishing pressure in the inflow

region, all graphs predict a maximum reconnection rate of

Emax
� 	 0.4, �30�

irrespective of the values of 
. For smaller values of 
, so-
lutions exist only for polytropic indices somewhat larger than
adiabatic values. The lack of solutions for smaller values of
the polytropic index is caused by the required amount of
heating, which is larger for smaller inflow pressure. The
heating term in Eq. �18� is proportional to �-1. Therefore,
larger values of the polytropic index are required for lower
inflow pressure to assure the existence of solutions.

Conversely, large values of the polytropic index repre-
sent lower compressibility. It is likely that the dynamics of
an inflowing cold plasma is more complex than described by
a polytropic pressure law, and likely involves the interaction
and partial thermalization of counterstreaming beams. Such
anisotropies are not included in this model, but the associ-
ated, quasi-one-dimensional compression would be qualita-
tively represented by a larger polytropic index.

The maximum reconnection rate is approximately twice
that reported, for example, in the Geospace Environment
Modeling program �GEM� challenge results. An obvious
contender for explaining the differences is the fact that the
kinetic GEM challenge calculations were performed for mass
ratios other than unity. Another possible reason for this dis-
crepancy lies in the adopted scaling. Whereas the GEM chal-

lenge results,15 as well as most studies in the literature, are
scaled by the asymptotic Alfven speed and magnetic field,
the scaling adopted here is by the values of Alfven speed and
magnetic field at the edge of the diffusion region. These val-
ues are typically reduced from their asymptotic values. In
fact, a recent study of the electron diffusion region in a simu-
lation with mass ratio of 25 found similar values of the re-
connection electric field if the scaling parameters were taken
from the diffusion region edge.16 Future studies will deter-
mine how results obtained for mass ratios other than unity
relate to the ones in this study.

Furthermore, it should be noted that the maximum rate
shown here may not be assumed in reality or in simulations.
In order for the system to exhibit a rate of E�=0.4, it has to
exhibit a very specific level of compressibility. In reality, the
plasma may be better described by a different value of the
polytropic index, e.g., by its adiabatic value. Since the theory
treats the polytropic index as a free parameter it cannot pre-
dict which value would actually be obtained. In this broad
sense our results should be seen as consistent with typical
values of the reconnection electric field in the literature.

The ratio of outflow to inflow density no is shown in Fig.
2. The density increase exhibits the expected behavior. We
find larger increases for smaller pressure in the inflow region,
as well as larger increases for smaller values of the poly-
tropic index. The physical reason behind these tendencies is
that less compression is necessary for higher inflow pressure
or larger polytropic index to provide current sheet pressure in
addition to that obtained from nonideal heating.

The last term of the RHS of Eq. �18� constitutes nona-
diabatic heating, i.e., a deviation from entropy conservation.
This deviation can be measured by the ratio

FIG. 1. �Color online� Reconnection electric field depending on inflow
plasma 
 and polytropic index �.

FIG. 2. �Color online� Ratio of outflow and inflow densities depending on
inflow plasma 
 and polytropic index �.
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S = pino
�/poni

�, �31�

which compares the specific entropies in inflow and outflow
regions. This parameter is shown in Fig. 3. It is evident from
the figure that the specific entropy in the outflow is consid-
erably larger than in the inflow. Specifically, we find larger
entropy increases �and, accordingly, more nonadiabatic heat-
ing� for smaller values of the pressure in the inflow region.
Increasing the polytropic index produces larger values of S,
consistent with the notion that adiabatic compression will
become more important for larger values of �.

The dimensions of the diffusion region vary with inflow
and compressibility parameters. For example, Fig. 4 displays
the diffusion region thickness determined by the bounce
width �6�. Here we find single maxima of d, and, as ex-
pected, generally larger values for higher inflow pressure.

The diffusion region aspect ratio is shown in Fig. 5. All
curves start near zero for lower polytropic indices and termi-
nate at rather large aspect ratios. For fixed � we find more
oblong shape of the diffusion region for smaller inflow pres-
sure. In a compressible plasma, as discussed here, the aspect
ratio is not directly related with the reconnection rate. Fur-
thermore, a large aspect ratio involves larger outflow mag-
netic fields, and consequently a lower current density and
energy conversion rate. The combination of these factors
leads to the single peak of the reconnection rate displayed in
Fig. 1 rather than a rate peak for the largest aspect ratio.

The outflow velocity is shown in Fig. 6. Here we find a
trend of larger outflow velocities for lower inflow pressure,
and for lower values of the polytropic index. A comparison
to Fig. 5 demonstrates that larger outflow speeds are also
related with more oblong shapes of the diffusion region, re-
flecting the impact of the continuity equation.

For comparison to an alternative way of scaling used by
many MHD modelers, we express the outflow velocity in
units of the �single-species� outflow Alfven speed defined by

vAo =
Bi

��omno

= vAi� ni

no
. �32�

Figure 7 displays the result of this scaling. It is noteworthy

FIG. 3. �Color online� Entropy ratio pino
� / poni

� depending on inflow plasma

 and polytropic index �.

FIG. 4. �Color online� Diffusion region thickness d depending on inflow
plasma 
 and polytropic index �.

FIG. 5. �Color online� Diffusion region aspect ratio d /L depending on in-
flow plasma 
 and polytropic index �.
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that all graphs provide values of order unity—a qualitative
match with the simple Sweet–Parker scaling results.

The total, i.e., combined, energy flux densities in the
inflow region are in dimensionless form Poynting flux

Si = vi, �33a�

enthalpy flux

Ei =
2�pi

� − 1
vi, �33b�

and kinetic energy flux

Ki = vi
3, �33c�

and they are dominated by Poynting flux. A typical example
is shown in Fig. 8, which depicts their variation with adia-
batic index for inflow 
=0.3. Enthalpy and kinetic energy
fluxes are of considerably smaller magnitude with the
Poynting flux exceeding the others by factors between 2 and
5. The dominance of the Poynting flux is a manifestation of
the predominant energy conversion: from magnetic energy to
plasma internal and kinetic energies.

This conversion is further illustrated in Fig. 9, which
depicts the outflow energy flux densities, again for inflow

=0.3. These energy flux densities are given by Poynting
flux

So = E�Bo, �34a�

enthalpy flux

Eo =
2�po

� − 1
vo, �34b�

and kinetic energy flux

Ko = novo
3. �34c�

We see a dominance of outflow enthalpy flux over ki-
netic energy flux and Poynting fluxes, a fact not represented
in traditional Sweet–Parker models.17 The increase in
Poynting flux for more incompressible conditions is a conse-
quence of the larger aspect ratio of the diffusion region,
which is associated with a larger value of the outgoing mag-

FIG. 7. �Color online� Outflow velocity based on outflow density depending
on inflow plasma 
 and polytropic index �.

FIG. 8. �Color online� Inflow energy flux densities for upstream 
=0.3.

FIG. 6. �Color online� Outflow velocity depending on inflow plasma 
 and
polytropic index �.
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netic field. The lower outflow velocity leads to an overall
reduced kinetic energy flux for larger values of �.

The dominance in the outflow of the enthalpy flux over
the other two energy fluxes is typical, as is seen in Figs. 10
and 11. Here we see that for all parameters of compressibility

and inflow pressure the enthalpy flux dominates over kinetic
energy flux by factors between 2 and 4, and over Poynting
flux by factors of 2–5.

An exception is the zero inflow pressure case, where
enthalpy and kinetic energy fluxes are comparable. This is
clearly a consequence of the singular, zero inflow pressure
condition, where no pressure can be obtained by compress-
ing the inflowing plasma. Accordingly, the outflow enthalpy
flux is somewhat smaller than those found for finite inflow
pressure, even if the latter is quite small. The relatively large
kinetic energy flux in this case results from a combination of
relatively fast outflow velocity �Fig. 6� combined with a
larger current sheet density �Fig. 2�. Because of the very
special conditions inherent in the zero-pressure model, we
feel that this model represents an exceptional case, which is
likely not typical of reconnection processes.

VII. SUMMARY

In this paper, we developed an analytical theory of col-
lisionless magnetic reconnection in a symmetrical pair-
plasma system. We started by identifying the basic functions
of the reconnection electric field: maintaining both the cur-
rent density and the pressure in the reconnection diffusion
region. Combining these basic concepts with a set of simpli-
fying assumptions, we could use the moment equations to
derive balance equations for mass, momentum or current
density, and internal energy. In both energy and momentum
equations, we implemented a dissipation model, which is
derived from the evolution of the full particle pressure ten-
sor, where only heat flux is neglected. This model appears to
be consistent with a number of recent numerical

FIG. 9. �Color online� Outflow energy flux densities for upstream 
=0.3.

FIG. 10. �Color online� Outflow kinetic energy flux density plotted vs en-
thalpy flux density for all parameters. The lower fluxes are obtained for
larger values of the polytropic index � with the exception of the 
=1 cal-
culation. Here, lower values of � yield larger kinetic energy but lower en-
thalpy flux densities.

FIG. 11. �Color online� Outflow Poynting flux density plotted vs enthalpy
flux density for all parameters. Here higher Poynting fluxes are obtained for
smaller values of the polytropic index �, again with the exception of the

=1 calculation. Here, lower values of � yield larger kinetic energy but
lower enthalpy flux densities.

102106-8 Hesse et al. Phys. Plasmas 16, 102106 �2009�

Downloaded 08 Mar 2011 to 128.183.169.235. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



simulations.9–12 This dissipation model introduces irrevers-
ibility into the physical process. In order to mimic some
effects of heat flux, we replaced the adiabatic index by a
more general polytropic index, the variation of which also
describes different compressibilities.

Assuming a current sheet width determined by the
bounce excursions of particles residing within the current
layer, we succeeded in combining the set of equations into
expressions for the reconnection electric field and other re-
lated parameters. A solution of this system was obtained
from a simple iterative procedure.

The solutions featured a number of expected properties.
Density increases from inflow to outflow, pressure increases
through a combination of adiabatic compression and nona-
diabatic, quasiviscous heating, dominance of enthalpy flux in
the outflow, and an outflow speed comparable to the Alfven
speed based on outflow density and inflow magnetic field.

The surprising result, however, is that we found a peak
reconnection rate of approximately E�	0.4, which is quite
independent of the inflow parameters. This number is larger
than the rates of 0.1–0.2 typically found in kinetic or Hall-
MHD models—even though Hall-MHD approaches are not
kinetic in nature. However, the rate obtained here is based on
a normalization to magnetic field and density at the inflow
edge of the diffusion region, the value of which was recog-
nized earlier.18 Here magnetic fields and Alfven speeds are
usually reduced from the asymptotic values used to normal-
ize kinetic and fluid numerical models. A recent investiga-
tion, which normalized the reconnection electric field to pa-
rameters as the edge of the electron diffusion region,
found values similar to the ones here of the scaled electric
field.16 Accounting for the expected reductions in the product
of Alfven speed and magnetic field, the rate found here is
therefore qualitatively consistent with kinetic, numerical
modeling.

Within the scope of our theory, we have therefore shown
that there is a limit to the value of the scaled reconnection
electric field. It should be noted that the actual value may be
different from the one derived here—the present theory had
to employ simplifying assumptions and quantitative predic-
tions should be seen in this light. Future investigations will
extend this theory to different particle masses, to configura-
tions with guide magnetic field, and perhaps employ more
complex descriptions of particle pressure. It may also be pos-
sible to connect this solution to a suitable outer solution.
These will be challenges to be addressed as the next steps.
For now, we hope that the present investigation provides
some hope that the longstanding issue of the magnitude of
the reconnection rate may be amenable to a solution after all.
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APPENDIX: DERIVATION OF THE PRESSURE
EQUATION

The pressure tensor evolution equation is

�PJ

�t
= − � · �v�PJ� − PJ · �v� − �PJ · �v��T

+
q

m
�PJ � B� + �PJ � B� �T� − � · QJ . �A1�

The total internal energy of the plasma species under consid-
eration is

K ª

1
2Trace�PJ� . �A2�

From this we obtain

�K

�t
= − � · �v�K� −

1

2
trace�PJ · �v�� −

1

2
trace�PJ · �v��T

−
1

2
trace�� · QJ� . �A3�

We define a heat flux vector by

qi =
1

2
k

Qikk. �A4�

Insertion and evaluation of the traces in Eq. �A3� yields

�K

�t
= = − 

i,k
Pik

�

�xk
vi − � · �v�K� − � · q� . �A5�

The pressure is now defined as p=2K /3. If we ignore the
divergence of the heat flux, we obtain

�p

�t
= −

2

3
i,k

Pik
�

�xk
vi − � · �v�p� . �A6�

Assumption �5� suggests to write

PJ = p1J + �J . �A7�

Insertion into Eq. �A6� yields

�p

�t
= − v� · �p −

5

3
p � · v� −

2

3
��J · �� · v� . �A8�

Finally, the pressure equation results from expanding the last
term in Eq. �A8� and using the symmetry of the pressure
tensor and the assumed translational invariance

�p

�t
= − v� · �p −

5

3
p � · v� −

2

3
��yz�zvy + �xy�xvy� . �A9�
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